Evaluating Measure of Modified Rotatability for Second Degree
 Polynomial Using a Pair of Balanced Incomplete Block Designs

P. JYOSTNA ${ }^{\text {a }}$ and B. Re. VICTOR BABU ${ }^{\text {b }}$
${ }^{a}$ Department of Statistics, Acharya Nagarjuna University, Guntur-522 510, India
${ }^{b}$ Department of Statistics, Acharya Nagarjuna University, Guntur-522 510, India

ARTICLE HISTORY

Compiled June 20, 2021
Rceived 09 February 2021; Accepted 07 June 2021

Abstract

In this paper, a study on evaluating measure of modified rotatability for second degree polynomial using a pair of balanced incomplete block designs ($5 \leq \mathrm{v} \leq 15$: v - number of factors) is suggested which enables us to assess the degree of modified rotatability for a given response surface design.

KEYWORDS

Response surface methodology; modified rotatability; measure.

1. Introduction

Response surface process is a collection of mathematical and statistical techniques appropriate for analysing problems in which several independent variables influence a dependent variable. The regressor variables are often called input or explanatory variables and the regressand variable is often the response variable. An important development of response surface designs was the introduction of rotatable designs suggested by [1]. Rotatable designs using balanced incomplete block designs (BIBD) was proposed by [2]. A design is said to be rotatable, if the variance of the response estimate is a function only of the distance of the point from the design centre. [3] developed modified second order response surface designs. [9] studied second order rotatable designs (SORD) through a pair of BIBDs. [4] introduced measure of rotatability for second degree polynomial designs. [10] studied modified second order rotatable designs and second order slope rotatable designs using a pair of BIBD. [15] studied measure of rotatability for second degree polynomial design using a pair of balanced incomplete block designs.
Lot of work was carried out by Victorbabu and some other authors on modified rotatability, measure of rotatability on second degree polynomial designs respectively [20], [21, 22], [23], [21], [16-19], [11], [12, 14] and [13]. Recently, evaluating measure of modified rotatability is studied by [5-8] using central composite designs (CCD), BIBD, pairwise balanced design and symmetrical unequal block arrangements with
two unequal block sizes respectively.
In this paper, we develop a new method of evaluating measure of modified rotatability for second degree polynomial using a pair of balanced incomplete block designs is suggested which enables us to assess the degree of rotatability for a given response surface design.

2. Conditions for SORD:

Suppose we want to use the second degree polynomial model $\mathrm{D}=\left(\mathrm{x}_{\mathrm{iu}}\right)$ to fit the surface,

$$
\begin{equation*}
Y_{u}=b_{0}+\sum_{i=1}^{v} b_{i} x_{i u}+\sum_{i=1}^{v} b_{i i} x_{i u}^{2}+\sum \sum_{i<j} b_{i j} x_{i u} x_{j u}+e_{u} \tag{1}
\end{equation*}
$$

where x_{iu} denotes the level of the $\mathrm{i}^{\text {th }}$ factor $(i=1,2, \ldots, v)$ in the $\mathrm{u}^{\text {th }}$ run $(u=$ $1,2, \ldots, N)$ of the experiment, $\mathrm{e}_{\mathrm{u}}{ }^{\prime} \mathrm{s}$ are uncorrelated random errors with mean zero and variance σ^{2} is said to be rotatable design of second order, if the variance of the estimated response of \hat{Y}_{u} from the fitted surface is only a function of the distance $\left(\mathrm{d}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{v}} \mathrm{x}_{\mathrm{i}}^{2}\right)$ of the point $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{v}\right)$ from the origin (centre) of the design. Such a spherical variance function for estimation of second degree polynomial is achieved if the design points satisfy the following conditions [cf. [1], [2]].
(1)

$$
\begin{align*}
& \sum \mathrm{x}_{\mathrm{iu}}=0, \sum \mathrm{x}_{\mathrm{iu}} \mathrm{x}_{\mathrm{ju}}=0, \sum \mathrm{x}_{\mathrm{iu}} \mathrm{x}_{\mathrm{j} u}^{2}=0, \sum \mathrm{x}_{\mathrm{iu}} \mathrm{x}_{\mathrm{ju}} \mathrm{x}_{\mathrm{ku}}=0, \sum \mathrm{x}_{\mathrm{iu}}^{3}=0, \\
& \sum \mathrm{x}_{\mathrm{iu}} \mathrm{x}_{\mathrm{ju}}^{3}=0, \sum \mathrm{x}_{\mathrm{iu}} \mathrm{x}_{\mathrm{ju}} \mathrm{x}_{\mathrm{ku}}^{2}=0, \sum \mathrm{x}_{\mathrm{iu}} \mathrm{x}_{\mathrm{ju}} \mathrm{x}_{\mathrm{ku}} \mathrm{x}_{\mathrm{lu}}=0 ; \text { for } \mathrm{i} \neq \mathrm{j} \neq \mathrm{k} \neq 1 \tag{2}
\end{align*}
$$

(2)

$$
\begin{align*}
& \text { (i) } \sum \mathrm{x}_{\mathrm{iu}}^{2}=\text { constant }=\mathrm{N} \lambda_{2} \tag{3}\\
& \text { (ii) } \sum \mathrm{x}_{\mathrm{iu}}^{4}=\text { constant }=\mathrm{cN} \lambda_{4} ; \text { for all } i
\end{align*}
$$

(3)

$$
\begin{equation*}
\sum \mathrm{x}_{\mathrm{iu}}^{2} \mathrm{x}_{\mathrm{ju}}^{2}=\text { constant }=\mathrm{N} \lambda_{4} ; \text { for } i \neq j \tag{4}
\end{equation*}
$$

(4)

$$
\begin{equation*}
\sum \mathrm{x}_{\mathrm{iu}}^{4}=\mathrm{c} \sum \mathrm{x}_{\mathrm{iu}}^{2} \mathrm{x}_{\mathrm{ju}}^{2} \tag{5}
\end{equation*}
$$

(5)

$$
\begin{equation*}
\frac{\lambda_{4}}{\lambda_{2}^{2}}>\frac{\mathrm{v}}{(\mathrm{c}+\mathrm{v}-1)} \tag{6}
\end{equation*}
$$

where c, λ_{2} and λ_{4} are constants and the summation is over the design points.

If the above mentioned conditions are satisfied, the variances and covariances of the estimated parameters become,

$$
\begin{gather*}
\mathrm{V}\left(\hat{\mathrm{~b}}_{0}\right)=\frac{\lambda_{4}(\mathrm{c}+\mathrm{v}-1) \sigma^{2}}{\mathrm{~N}\left[\lambda_{4}(\mathrm{c}+\mathrm{v}-1)-\mathrm{v} \lambda_{2}^{2}\right]}, \\
\mathrm{V}\left(\hat{\mathrm{~b}}_{\mathrm{i}}\right)=\frac{\sigma^{2}}{\mathrm{~N} \lambda_{2}}, \\
\mathrm{~V}\left(\hat{\mathrm{~b}}_{\mathrm{ij}}\right)=\frac{\sigma^{2}}{\mathrm{~N} \lambda_{4}}, \\
\mathrm{~V}\left(\hat{\mathrm{~b}}_{\mathrm{ii}}\right)=\frac{\sigma^{2}}{(\mathrm{c}-1) \mathrm{N} \lambda_{4}}\left[\frac{\lambda_{4}(\mathrm{c}+\mathrm{v}-2)-(\mathrm{v}-1) \lambda_{2}^{2}}{\lambda_{4}(\mathrm{c}+\mathrm{v}-1)-\mathrm{v} \lambda_{2}^{2}}\right], \\
\operatorname{Cov}\left(\hat{\mathrm{b}}_{0}, \hat{\mathrm{~b}}_{\mathrm{ii}}\right)=\frac{-\lambda_{2} \sigma^{2}}{\mathrm{~N}\left[\lambda_{4}(\mathrm{c}+\mathrm{v}-1)-\mathrm{v} \lambda_{2}^{2}\right]}, \\
\operatorname{Cov}\left(\hat{\mathrm{b}}_{\mathrm{ii}}, \hat{\mathrm{~b}}_{\mathrm{jj}}\right)=\frac{\left(\lambda_{2}^{2}-\lambda_{4}\right) \sigma^{2}}{(\mathrm{c}-1) \mathrm{N} \lambda_{4}\left[\lambda_{4}(\mathrm{c}+\mathrm{v}-1)-\mathrm{v} \lambda_{2}^{2}\right]} \tag{7}
\end{gather*}
$$

and other covariances are zero.

3. Evaluating Measure of Modified Rotatability for Second Degree Polynomial Using a Pair of BIBD

Following [1], [2], [9], [4], [3], [10] and [15] the proposed method of evaluating measure of modified rotatability for second degree polynomial designs using a pair of BIBD is suggested as follows.

Let $\mathrm{D}_{1}=\left(\mathrm{v}, \mathrm{b}_{1}, \mathrm{r}_{1}, \mathrm{k}_{1}, \lambda_{1}\right), \mathrm{D}_{2}=\left(\mathrm{v}, \mathrm{b}_{2}, \mathrm{r}_{2}, \mathrm{k}_{2}, \lambda_{2}\right)$ are two BIBD's. Then design points $\mathrm{y}_{1}\left[1-\left(\mathrm{v}, \mathrm{b}_{1}, \mathrm{r}_{1}, \mathrm{k}_{1}, \lambda_{1}\right)\right] 2^{\mathrm{t}\left(\mathrm{k}_{1}\right)} \bigcup \mathrm{y}_{2}\left[\mathrm{a}-\left(\mathrm{v}, \mathrm{b}_{2}, \mathrm{r}_{2}, \mathrm{k}_{2}, \lambda_{2}\right)\right] 2^{\mathrm{t}\left(\mathrm{k}_{2}\right)} \bigcup\left(\mathrm{n}_{0}\right)$ will give a measure of modified rotatability for second degree polynomial using a pair of BIBD. From (3) and (4) we have,

$$
\begin{align*}
& \sum \mathrm{x}_{\mathrm{iu}}^{2}=\mathrm{y}_{1} \mathrm{r}_{1} 2^{\mathrm{t}\left(\mathrm{k}_{1}\right)}+\mathrm{y}_{2} \mathrm{r}_{2} 2^{\mathrm{t}\left(\mathrm{k}_{2}\right)} \mathrm{a}^{2}=\mathrm{N} \lambda_{2} \tag{8}\\
& \sum \mathrm{x}_{\mathrm{iu}}^{4}=\mathrm{y}_{1} \mathrm{r}_{1} 2^{\mathrm{t}\left(\mathrm{k}_{1}\right)}+\mathrm{y}_{2} \mathrm{r}_{2} 2^{\mathrm{t}\left(\mathrm{k}_{2}\right)} \mathrm{a}^{4}=\mathrm{cN} \lambda_{4} \tag{9}
\end{align*}
$$

$$
\begin{equation*}
\sum \mathrm{x}_{\mathrm{iu}}^{2} \mathrm{x}_{\mathrm{ju}}^{2}=\mathrm{y}_{1} \lambda_{1} 2^{\mathrm{t}\left(\mathrm{k}_{1}\right)}+\mathrm{y}_{2} \lambda_{2} 2^{\mathrm{t}\left(\mathrm{k}_{2}\right)} \mathrm{a}^{4}=\mathrm{N} \lambda_{4} \tag{10}
\end{equation*}
$$

From (9) and (10), we get

$$
\mathrm{a}^{4}=\frac{\mathrm{y}_{1}\left(3 \lambda_{1}-\mathrm{r}_{1}\right)}{\mathrm{y}_{2}\left(\mathrm{r}_{2}-3 \lambda_{2}\right)} 2^{\mathrm{t}\left(\mathrm{k}_{1}\right)-\mathrm{t}\left(\mathrm{k}_{2}\right)}
$$

The modified condition $\left(\sum \mathrm{x}_{\mathrm{iu}}^{2}\right)^{2}=\mathrm{N} \sum \mathrm{x}_{\mathrm{iu}}^{2} \mathrm{x}_{\mathrm{ju}}^{2}$ leads to N which is given by $\mathrm{N}=\frac{\left(\mathrm{y}_{1} \mathrm{r}_{1} 2^{t\left(k_{1}\right)}+\mathrm{y}_{2} \mathrm{r}_{2} 2^{t\left(k_{2}\right)} \mathrm{a}^{2}\right)^{2}}{\mathrm{y}_{1} \lambda_{1} 2^{t\left(k_{1}\right)}+\mathrm{y}_{2} \lambda_{2} 2^{t\left(k_{2}\right)} \mathrm{a}^{4}}$. Alternatively N may be obtained directly as $\mathrm{N}=\mathrm{y}_{1} \mathrm{~b}_{1} 2^{\mathrm{t}\left(\mathrm{k}_{1}\right)}+\mathrm{y}_{2} \mathrm{~b}_{2} 2^{\mathrm{t}\left(\mathrm{k}_{2}\right)}+\mathrm{n}_{0}$ design points without any additional set of points, where n_{0} is given by $n_{0}=\frac{\left(y_{1} r_{1} 2^{t\left(k_{1}\right)}+y_{2} r_{2} 2^{t\left(k_{2}\right)} a^{2}\right)^{2}}{y_{1} \lambda_{1} 2^{t\left(k_{1}\right)}+y_{2} \lambda_{2} 2^{\left(k_{2}\right)} a^{4}}-y_{1} b_{1} 2^{t\left(k_{1}\right)}-y_{2} b_{2} 2^{t\left(k_{2}\right)}$ and n_{0} turns out to be an integer with ' a ' prefixed and $c=\frac{y_{1} r_{1} 2^{t\left(k_{1}\right)}+y_{2} r_{2} 2^{t\left(k_{2}\right)} a^{4}}{y_{1} \lambda_{1} 2^{t\left(k_{1}\right)}+y_{2} \lambda_{2} 2^{t\left(k_{2}\right)} a^{4}}$.
From equations (8) and (10) and on simplification we get $\lambda_{2}=\frac{\mathrm{y}_{1} \mathrm{r}_{1} 2^{t\left(k_{1}\right)}+\mathrm{y}_{2} \mathrm{r}_{2} 2^{t\left(k_{2}\right)} \mathrm{a}^{2}}{\mathrm{~N}}$ and $\quad \lambda_{4}=\frac{\mathrm{y}_{1} \lambda_{1} 2^{\mathrm{t}\left(\mathrm{k}_{1}\right)}+\mathrm{y}_{2} \lambda_{2} 2^{t\left(k_{2}\right)} \mathrm{a}^{4}}{\mathrm{~N}}$.
To obtain measure of modified rotatability for second degree polynomial using a pair of BIBD, we have

$$
\begin{gathered}
P_{v}(D)=\frac{1}{1+R_{v}(D)} \\
R_{v}(D)=\left[\frac{(c-3)}{(c-1)}\right]^{2} \frac{6 v(v-1)}{\lambda_{4}^{2}(v+2)^{2}(v+4)(v+6)(v+8) g^{8}}
\end{gathered}
$$

Here g is a scaling factor and can be obtained as follows,

$$
g=\left\{\begin{array}{l}
\frac{1}{a}, \text { if } a \leq \sqrt{\frac{1}{r_{2}}\left[\frac{y_{1}\left(b_{1}-r_{1}\right) 2^{t\left(k_{1}\right)-t\left(k_{2}\right)}}{y_{2}}+b_{2}\right]} \\
\frac{1}{\sqrt{\frac{1}{r_{2}}\left[\frac{y_{1}\left(b_{1}-r_{1}\right) 2^{t\left(k_{1}\right)-t\left(k_{2}\right)}}{y_{2}}+b_{2}\right]}}, \text { otherwise }
\end{array}\right.
$$

The following table gives the values of an evaluating measure of modified rotatability for second degree polynomial using a pair of BIBD. It can be verified that $P_{v}(D)$ is 1 if and only if the design is modified rotatable, and it is smaller than one for nearly modified rotatable designs.
Example: We illustrate the evaluating measure of modified rotatability for second degree polynomial for $\mathrm{v}=5$ factors with the help of a pair of BIBDs with parameters $D_{1}=\left(\mathrm{v}=5, b_{1}=5, r_{1}=4, k_{1}=4, \lambda_{1}=3\right)$ and $D_{2}=\left(\mathrm{v}=5, \quad b_{2}=10, r_{2}=\right.$ $\left.4, k_{2}=2, \lambda_{2}=1\right)$. The design points, $\mathrm{y}_{1}\left[1-\left(\mathrm{v}=5, \mathrm{~b}_{1}=5, \mathrm{r}_{1}=4, \mathrm{k}_{1}=4, \lambda_{1}=\right.\right.$ $3)] 2^{4} \bigcup \mathrm{y}_{2}\left[\mathrm{a}-\left(\mathrm{v}=5, \mathrm{~b}_{2}=10, \mathrm{r}_{2}=4, \mathrm{k}_{2}=2, \lambda_{2}=1\right)\right] 2^{2} \bigcup\left(\mathrm{n}_{0}\right)$
will give a measure of modified rotatability for second degree polynomial in $\mathrm{N}=162$ design points. From (8), (9) and (10), we have

$$
\begin{equation*}
\sum \mathrm{x}_{\mathrm{iu}}^{2}=\mathrm{y}_{1} 64+\mathrm{y}_{2} 16 \mathrm{a}^{2}=\mathrm{N} \lambda_{2} \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& \sum \mathrm{x}_{\mathrm{iu}}^{4}=\mathrm{y}_{1} 64+\mathrm{y}_{2} 16 \mathrm{a}^{4}=\mathrm{cN} \lambda_{4} \tag{12}\\
& \sum \mathrm{x}_{\mathrm{iu}}^{2} \mathrm{x}_{\mathrm{ju}}^{2}=\mathrm{y}_{1} 48+\mathrm{y}_{2} 4 \mathrm{a}^{4}=\mathrm{N} \lambda_{4} \tag{13}
\end{align*}
$$

From equations (12) and (13) with rotatability value $\mathrm{c}=3, \mathrm{y}_{1}=1$ and $\mathrm{y}_{2}=5$, we get $\mathrm{a}^{4}=4 \Rightarrow \mathrm{a}^{2}=2 \Rightarrow \mathrm{a}=1.414213$. From equations (11) and (13) using the modified condition with $\left(\lambda_{2}^{2}=\lambda_{4}\right)$ along with $\mathrm{a}^{2}=2, \mathrm{y}_{1}=1$ and $\mathrm{y}_{2}=5$, we get $\mathrm{N}=162$, $\mathrm{n}_{0}=112$. For modified SORD we get $\mathrm{P}_{\mathrm{v}}(\mathrm{D})=1$ by taking $\mathrm{a}=1.414213$ and scaling factor $g=0.7071$. Then the design is modified SORD using a pair of BIBD.
Instead of taking $a=1.414213$ if we take $a=2.2$ for the above pair of BIBD $D_{1}=\left(\mathrm{v}=5, b_{1}=5, r_{1}=4, k_{1}=4, \lambda_{1}=3\right)$ and $\mathrm{D}_{2}=\left(\mathrm{v}=5, \mathrm{~b}_{2}=10, \mathrm{r}_{2}=4, \mathrm{k}_{2}=2, \lambda_{2}=\right.$ 1) from equations (12) and (13), we get $c=3.7522$. The scaling factorg $=0.6086$, $\mathrm{R}_{\mathrm{v}}(\mathrm{D})=0.0121$ and $\mathrm{P}_{\mathrm{v}}(\mathrm{D})=0.9881$. Here $\mathrm{P}_{\mathrm{v}}(\mathrm{D})$ becomes smaller it deviates from modified rotatability.
Table 1 gives the values of evaluating measure of modified rotatability $\mathrm{P}_{\mathrm{v}}(\mathrm{D})$ for second degree polynomial using a pair of BIBD, at different values of 'a' for $5 \leq \mathrm{v} \leq 15$. It can be verified that $\mathrm{P}_{\mathrm{v}}(\mathrm{D})$ is one, if and only if a design ' D^{\prime} is modified rotatable. $\mathrm{P}_{\mathrm{v}}(\mathrm{D})$ becomes smaller as ${ }^{\prime} \mathrm{D}^{\prime}$ deviates from a modified rotatable design.
Conclusion: Evaluating measure of modified rotatability for second degree polynomial designs using a pair of BIBD, at different values of 'a' for $5 \leq \mathrm{v} \leq 15$. It can be verified that $\mathrm{P}_{\mathrm{v}}(\mathrm{D})$ is one if and only if the design is modified rotatable design and it is less than one for a nearly modified rotatable design.
Table 1: Evaluating measure of modified rotatability for second degree polynomial using a pair of BIBD.

$(5,5,4,4,3)(5,10,4,2,1), \mathrm{N}=162, \mathrm{a}=1.414213, \mathrm{n}_{0}=112, \mathrm{y}_{1}=1, \mathrm{y}_{2}=5$				
a	c	g	$\mathrm{R}_{\mathrm{v}}(\mathrm{D})$	$\mathrm{P}_{\mathrm{v}}(\mathrm{D})$
1.0	2.1176	1	1.8997×10^{-3}	0.9981
1.3	2.7824	0.7692	3.707×10^{-4}	0.9996
${ }^{2} 1.414213$	3	0.7071	0	1
1.6	3.2852	0.625	5.901×10^{-4}	0.9994
1.9	3.5853	0.6086	8.302×10^{-3}	0.9918
2.2	3.7522	0.6086	0.0121	0.9881
2.5	3.8456	0.6086	0.0143	0.9859
2.8	3.8998	0.6086	0.0156	0.9846
3.1	3.9325	0.6086	0.0164	0.9839

$(6,15,10,4,6)(6,15,5,2,1), \mathrm{N}=360, \mathrm{a}=2, \mathrm{n}_{0}=60, \mathrm{y}_{1}=1, \mathrm{y}_{2}=1$				
a	c	g	$\mathrm{R}_{\mathrm{v}}(\mathrm{D})$	$\mathrm{P}_{\mathrm{v}}(\mathrm{D})$
1.0	1.8	1	0.0191	0.9813
1.3	2.0212	0.7692	0.0635	0.9403
1.6	2.3817	0.625	0.0729	0.9321
1.9	2.8397	0.5263	0.0109	0.9891
$* 2.0$	3	0.5	0	1
2.2	3.3131	0.4545	0.0852	0.9215
2.5	3.7314	0.4	0.9273	0.5188
2.8	4.0639	0.3779	2.4537	0.2895
3.1	4.3124	0.3779	3.1945	0.2384

$(7,7,6,6,5)(7,21,6,2,1), \mathrm{N}=882, \mathrm{a}=2, \mathrm{n}_{0}=182, \mathrm{y}_{1}=2, \mathrm{y}_{2}=3$				
a	c	g	$\mathrm{R}_{\mathrm{v}}(\mathrm{D})$	$\mathrm{P}_{\mathrm{v}}(\mathrm{D})$
1.0	1.3735	1	0.0816	0.9245
1.3	1.6644	0.7692	0.1419	0.8757
1.6	2.1469	0.625	0.1023	0.9072
1.9	2.7757	0.5263	0.0117	0.9885
${ }^{2} 2.0$	3.4447	0.5035	0.0345	0.9667
2.2	3	0.5035	0	1
2.5	4.0526	0.5035	0.1239	0.8898
2.8	4.5476	0.5035	0.1983	0.8345
3.1	4.9245	0.5035	0.2515	0.7996

$(8,14,7,4,3)(8,28,7,2,1), \mathrm{N}=700, \mathrm{a}=1.414213, \mathrm{n}_{0}=140, \mathrm{y}_{1}=2, \mathrm{y}_{2}=1$				
a	c	g	$\mathrm{R}_{\mathrm{v}}(\mathrm{D})$	$\mathrm{P}_{\mathrm{v}}(\mathrm{D})$
1.0	2.52	1	4.8693×10^{-3}	0.9952
1.3	2.8296	0.7692	3.4536×10^{-3}	0.9966
${ }^{*} 1.414213$	3	0.7071	0	1
1.6	3.3343	0.625	0.043	0.9588
1.9	3.9756	0.5263	0.8914	0.5287
2.2	4.6384	0.4545	5.4334	0.1554
2.5	5.224	0.4	20.6542	0.0462
2.8	5.6895	0.3571	60.6777	0.0162
3.1	6.0374	0.3226	151.4104	0.0066

$(9,18,8,4,3)(9,12,4,3,1), \mathrm{N}=800, \mathrm{a}=1.414213, \mathrm{n}_{0}=128, \mathrm{y}_{1}=2, \mathrm{y}_{2}=1$				
a	c	g	$\mathrm{R}_{\mathrm{v}}(\mathrm{D})$	$\mathrm{P}_{\mathrm{v}}(\mathrm{D})$
1.0	2.7692	1	7.1575×10^{-4}	0.9993
1.3	2.923	0.7692	5.5022×10^{-4}	0.9995
${ }^{2} 1.414213$	3	0.7071	0	1
1.6	3.1376	0.625	7.4906	0.9926
1.9	3.3608	0.5263	0.1669	0.857
2.2	3.5483	0.4545	1.0096	0.4976
2.5	3.6867	0.4	3.9603	0.2016
2.8	3.7822	0.3571	12.5633	0.0737
3.1	3.8467	0.3226	31.741	0.0305

$(12,22,11,6,5)(12,33,11,4,3), \mathrm{N}=1408, \mathrm{a}=1.414213, \mathrm{n}_{0}=176, \mathrm{y}_{1}=1, \mathrm{y}_{2}=1$

a	c	g	$\mathrm{R}_{\mathrm{v}}(\mathrm{D})$	$\mathrm{P}_{\mathrm{v}}(\mathrm{D})$
1.0	2.5385	1	1.0102×10^{-3}	0.9989
1.3	2.8768	0.7692	3.9461×10^{-4}	0.9996
${ }^{*} 1.414213$	3	0.7071	0	1
1.6	3.1722	0.625	0.012	0.9882
1.9	3.3679	0.5263	0.046	0.956
2.2	3.484	0.4545	0.2338	0.8105
2.5	3.5514	0.4472	0.3276	0.7532
2.8	3.5912	0.4472	0.3652	0.7325
3.1	3.6156	0.4472	0.3886	0.7202

$(13,26,12,6,5)(13,26,6,3,1), \mathrm{N}=1200, \mathrm{a}=1.414213, \mathrm{n}_{0}=160, \mathrm{y}_{1}=1, \mathrm{y}_{2}=1$				
a	c	g	$\mathrm{R}_{\mathrm{v}}(\mathrm{D})$	$\mathrm{P}_{\mathrm{v}}(\mathrm{D})$
1.0	2.5714	1	1.7819×10^{-3}	0.9982
1.3	2.8499	0.7692	2.5252×10^{-3}	0.9975
${ }^{*} 1.414213$	3	0.7071	0	1
1.6	3.2885	0.625	0.0168	0.9834
1.9	3.8203	0.5263	0.3442	0.7439
2.2	4.342	0.4545	2.1199	0.3205
2.5	4.781	0.4	8.1106	0.1097
2.8	5.1162	0.3571	23.923	0.0401
3.1	5.3592	0.3226	59.8453	0.0164

$(15,15,7,7,3)(15,35,7,3,1), \mathrm{N}=1400, \mathrm{a}=1.414213, \mathrm{n}_{0}=160, \mathrm{y}_{1}=1, \mathrm{y}_{2}=1$				
a	c	g	$\mathrm{R}_{\mathrm{v}}(\mathrm{D})$	$\mathrm{P}_{\mathrm{v}}(\mathrm{D})$
1.0	2.52	1	1.8507×10^{-3}	0.9982
1.3	1.9197	0.7692	0.2089	0.8272
${ }^{*} 1.414213$	3	0.7071	0	1
1.6	3.3343	0.625	0.0163	0.9839
1.9	3.9756	0.5263	0.3388	0.7469
2.2	4.6384	0.4545	2.0651	0.3263
2.5	5.224	0.4	7.8500	0.113
2.8	5.6895	0.3571	23.0617	0.0416
3.1	6.0374	0.3226	0.1421	0.8756

*indicates exact modified rotatability value using a pair of BIBDs (cf. [10])

Acknowledgement(s)

The authors are grateful to the referee and the chief editor for their constructive suggestions, which have led to great improvement on the earlier version of the paper.

References

[1] Box, G.E.P. and Hunter, J.S. (1957), Multifactor experimental designs for exploring response surfaces, Annals of Mathematical Statistics, 28, 195-241.
[2] Das, M.N. and Narasimham, V.L. (1962), Construction of rotatable designs through balanced incomplete block designs, Annals of Mathematical Statistics, 33, 1421-1439.
[3] Das, M.N., Rajendra P. and Manocha, VP. (1999). Response surface designs, symmetrical and asymmetrical, rotatable and modified, Statistics and Applications, 1, 17-34.
[4] Park, S.H, J. H. Lim and Y. Baba (1993), A measure of rotatability for second order response surface designs, Annals of Institute of Statistical Mathematics, 45, 655-664.
[5] Jyostna, P. Sulochana, B. and Victorbabu, B. Re. (2021a). Measure of modified rotatability for second order response surface designs using central composite designs, Journal of Mathematical and Computational Sciences, 11(1), 494-519.
[6] Jyostna, P. and Victorbabu, B. Re. (2021b). Evaluating measure of modified rotatability for second degree polynomial designs using balanced incomplete block designs, Asian Journal of Probability and Statistic, 10(4), 47-59.
[7] Jyostna, P. and Victorbabu, B. Re. (2021c). Measure of modified rotatability for second
order response surface designs using pairwise balanced designs, International Journal Research for in Applied Science \& Engineering Technology, 9, 506-514.
[8] Jyostna, P. and Victorbabu, B. Re. (2021d). Evaluating measure of modified rotatability for second degree polynomial using symmetrical unequal block arrangements with two unequal block sizes, International Journal of Mathematics and Statistics Invention 9(1), 19-28.
[9] Narasimham, V. L., Rao, P. R., and Rao, K.N. (1983). Construction of second order rotatable designs through a pair of balanced incomplete block designs. Journal of the Indian Society of Agricultural Statistics, 35, 36-40.
[10] Victorbabu, B. Re. (2006). Construction of modified second order rotatable designs and second order slope rotatable designs using a pair of BIBD, Sri Lankan Journal of Applied Statistics, 7, 39-53.
[11] Victorbabu, B. Re. (2015). On measure of rotatability for second order response surface designs- a review, Journal of Kerala Statistical Association, 26, 37-56.
[12] Victorbabu, B. Re. and Chiranjeevi, P. and Surekha, Ch. V. V. S. (2017). On measure of rotatability for second order response surface designs using balanced incomplete block designs, International Journal of Agricultural and Statistical Sciences, 13(2), 439-443.
[13] Victorbabu, B. Re. and Chiranjeevi. P. (2018). On measure of rotatability for second order response surface designs using symmetrical unequal block arrangements with two unequal block sizes, International Journal of Agricultural and Statistical Sciences, 14(1), 1-6.
[14] Victorbabu, B. Re. and Jyostna, P, Surekha, Ch.V.V.S. (2016). Measure of rotatability for second order response surface designs using a pair of symmetrical unequal block arrangements with two unequal block sizes, International Journal of Agricultural and Statistical Sciences, 12(1), 9-11.
[15] Victorbabu, B. Re. Jyostna, P, Surekha, Ch.V.V.S. (2017). Measure of rotatability for second order response surface designs using a pair of balanced incomplete block designs, Thailand Statistician, 15(1), 27-41.
[16] Victorbabu, B. Re. and Surekha, Ch.V.V.S. (2012). Construction of measure of second order rotatable designs using central composite designs, International Journal of Agricultural and Statistical Sciences, 8(1), 1-6.
[17] Victorbabu, B. Re. and Surekha, Ch.V.V.S. (2014). Measure of rotatability for second order response surface designs using a pair of partially balanced incomplete block design, Thailand Statistician, 12(2), 179-189.
[18] Victorbabu, B. Re., and Surekha, Ch. V. V. S. (2015). A note on measure of rotatability for second order response surface designs using balanced incomplete block designs, Thailand Statistician, 13, 97-110.
[19] Victorbabu, B. Re. and Surekha, Ch. V. V. S. (2013). A note on measure of rotatability for second order response surface designs using incomplete block designs, Journal of Statistics: Advances in Theory and Applications, 10(1), 137-151.
[20] Victorbabu, B. Re. and Vasundharadevi, V. (2005). Modified second order response surface designs using balanced incomplete block designs, Sri Lankan Journal of Applied Statistics. 6, 1-11.
[21] Victorbabu, B. Re. and Vasundharadevi, V. (2008). Modified second order response surface designs, rotatable designs using symmetrical unequal block arrangements with two unequal block sizes, Pakistan Journal of Statistics, 24(1), 67-76.
[22] Victorbabu, B. Re. and Vasundharadevi, V. and Viswanadham, B. (2006). Modified second order response surface designs, rotatable designs using pairwise balanced designs, Advances and Applications in Statistics, 6, 323-334.
[23] Victorbabu, B. Re. and Vasundharadevi, V. and Viswanadham, B. (2008). Modified second order response surface designs using central composite designs, Canadian Journal of Pure and Applied Sciences, 2(1), 289-294.

